您现在的位置是: 首页 > 车型解析 车型解析

倒车雷达国内外研究现状_汽车倒车雷达论文

tamoadmin 2024-05-18 人已围观

简介液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)

倒车雷达国内外研究现状_汽车倒车雷达论文

液压伺服系统设计

液压伺服系统设计

在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下:

1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。

2)拟定控制方案,画出系统原理图。

3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。

4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。

5)校核精度和性能指标,选择校正方式和设计校正元件。

6)选择液压能源及相应的附属元件。

7)完成执行元件及液压能源施工设计。

本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。

4.1 全面理解设计要求

4.1.1 全面了解被控对象

液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。

4.1.2 明角设计系统的性能要求

1)被控对象的物理量:位置、速度或是力。

2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。

3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。

4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定;

5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求;

6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。

4.1.3 负载特性分析

正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有惯性负载、弹性负载、粘性负载、各种摩擦负载(如静摩擦、动摩擦等)以及重力和其它不随时间、位置等参数变化的恒值负载等。

4.2 拟定控制方案、绘制系统原理图

在全面了解设计要求之后,可根据不同的控制对象,按表6所列的基本类型选定控制方案并拟定控制系统的方块图。如对直线位置控制系统一般采用阀控液压缸的方案,方块图如图36所示。

图36 阀控液压缸位置控制系统方块图

表6 液压伺服系统控制方式的基本类型

伺服系统 控制信号 控制参数 运动类型 元件组成

机液

电液

气液

电气液 模拟量

数字量

位移量 位置、速度、加速度、力、力矩、压力 直线运动

摆动运动

旋转运动 1.阀控制:阀-液压缸,阀-液压马达

2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达

3.其它:步近式力矩马达

4.3 动力元件参数选择

动力元件是伺服系统的关键元件。它的一个主要作用是在整个工作循环中使负载按要求的速度运动。其次,它的主要性能参数能满足整个系统所要求的动态特性。此外,动力元件参数的选择还必须考虑与负载参数的最佳匹配,以保证系统的功耗最小,效率高。

动力元件的主要参数包括系统的供油压力、液压缸的有效面积(或液压马达排量)、伺服阀的流量。当选定液压马达作执行元件时,还应包括齿轮的传动比。

4.3.1 供油压力的选择

选用较高的供油压力,在相同输出功率条件下,可减小执行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,设备结构紧凑,同时油腔的容积减小,容积弹性模数增大,有利于提高系统的响应速度。但是随供油压力增加,由于受材料强度的限制,液压元件的尺寸和重量也有增加的趋势,元件的加工精度也要求提高,系统的造价也随之提高。同时,高压时,泄漏大,发热高,系统功率损失增加,噪声加大,元件寿命降低,维护也较困难。所以条件允许时,通常还是选用较低的供油压力。

常用的供油压力等级为7MPa到28MPa,可根据系统的要求和结构限制条件选择适当的供油压力。

4.3.2 伺服阀流量与执行元件尺寸的确定

如上所述,动力元件参数选择除应满足拖动负载和系统性能两方面的要求外,还应考虑与负载的最佳匹配。下面着重介绍与负载最佳匹配问题。

(1)动力元件的输出特性

将伺服阀的流量——压力曲线经坐标变换

绘于υ-FL平面上,所得的抛物线即为动力元件稳态时的输出特性,见图37。

图37 参数变化对动力机构输出特性的影响

a)供油压力变化;b)伺服阀容量变化;c)液压缸面积变化

图中 FL——负载力,FL=pLA;

pL——伺服阀工作压力;

A——液压缸有效面积;

υ——液压缸活塞速度,

qL——伺服阀的流量;

q0——伺服阀的空载流量;

ps——供油压力。

由图37可见,当伺服阀规格和液压缸面积不变,提高供油压力,曲线向外扩展,最大功率提高,最大功率点右移,如图37a。

当供油压力和液压缸面积不变,加大伺服阀规格,曲线变高,曲线的顶点A ps不变,最大功率提高,最大功率点不变,如图37b。

当供油压力和伺服阀规格不变,加大液压缸面积A,曲线变低,顶点右移,最大功率不变,最大功率点右移,如图37c。

(2)负载最佳匹配图解法

在负载轨迹曲线υ-FL平面上,画出动力元件输出特性曲线,调整参数,使动力元件输出特性曲线从外侧完全包围负载轨迹曲线,即可保证动力元件能够拖动负载。在图38中,曲线1、2、3代表三条动力元件的输出特性曲线。曲线2与负载轨迹最大功率点c相切,符合负载最佳匹配条件,而曲线1、3上的工作点α和b,虽能拖动负载,但效率都较低。

(3)负载最佳匹配的解析法

参见液压动力元件的负载匹配。

(4)近似计算法

在工程设计中,设计动力元件时常采用近似计算法,即按最大负载力FLmax选择动力元件。在动力元件输出特性曲线上,限定

FLmax≤pLA=

,并认为负载力、最大速度和最大加速度是同时出现的,这样液压缸的有效面积可按下式计算:

(37)

图38 动力元件与负载匹配图形

按式37求得A值后,可计算负载流量qL,即可根据阀的压降从伺服阀样本上选择合适的伺服阀。近似计算法应用简便,然而是偏于保守的计算方法。采用这种方法可以保证系统的性能,但传递效率稍低。

(5)按液压固有频率选择动力元件

对功率和负载很小的液压伺服系统来说,功率损耗不是主要问题,可以根据系统要求的液压固有频率来确定动力元件。

四边滑阀控制的液压缸,其活塞的有效面积为

(38)

二边滑阀控制的液压缸,其活塞的有效面积为

(39)

液压固有频率ωh可以按系统要求频宽的(5~10)倍来确定。对一些干扰力大,负载轨迹形状比较复杂的系统,不能按上述的几种方法计算动力元件,只能通过作图法来确定动力元件。

计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A换成液压马达的排量D,负载力FL换成负载力矩TL,负载速度换成液压马达的角速度 ,就可以得到相应的计算公式。当系统采用了减速机构时,应注意把负载惯量、负载力、负载的位移、速度、加速度等参数都转换到液压马达的轴上才能作为计算的参数。减速机构传动比选择的原则是:在满足液压固有频率的要求下,传动比最小,这就是最佳传动比。

4.3.3 伺服阀的选择

根据所确定的供油压力ps和由负载流量qL(即要求伺服阀输出的流量)计算得到的伺服阀空载流量q0,即可由伺服阀样本确定伺服阀的规格。因为伺服阀输出流量是限制系统频宽的一个重要因素,所以伺服阀流量应留有余量。通常可取15%左右的负载流量作为伺服阀的流量储备。

除了流量参数外,在选择伺服阀时,还应考虑以下因素:

1)伺服阀的流量增益线性好。在位置控制系统中,一般选用零开口的流量阀,因为这类阀具有较高的压力增益,可使动力元件有较大的刚度,并可提高系统的快速性与控制精度。

2)伺服阀的频宽应满足系统频宽的要求。一般伺服阀的频宽应大于系统频宽的5倍,以减小伺服阀对系统响应特性的影响。

3)伺服阀的零点漂移、温度漂移和不灵敏区应尽量小,保证由此引起的系统误差不超出设计要求。

4)其它要求,如对零位泄漏、抗污染能力、电功率、寿命和价格等,都有一定要求。

4.3.4 执行元件的选择

液压伺服系统的执行元件是整个控制系统的关键部件,直接影响系统性能的好坏。执行元件的选择与设计,除了按本节所述的方法确定液压缸有效面积A(或液压马达排量D)的最佳值外,还涉及密封、强度、摩擦阻力、安装结构等问题。

4.4 反馈传感器的选择

根据所检测的物理量,反馈传感器可分为位移传感器、速度传感器、加速度传感器和力(或压力)传感器。它们分别用于不同类型的液压伺服系统,作为系统的反馈元件。闭环控制系统的控制精度主要决定于系统的给定元件和反馈元件的精度,因此合理选择反馈传感器十分重要。

传感器的频宽一般应选择为控制系统频宽的5~10倍,这是为了给系统提供被测量的瞬时真值,减少相位滞后。传感器的频宽对一般系统都能满足要求,因此传感器的传递函数可近似按比例环节来考虑。

4.5 确定系统方块图

根据系统原理图及系统各环节的传递函数,即可构成系统的方块图。根据系统的方块图可直接写出系统开环传递函数。阀控液压缸和阀控液压马达控制系统二者的传递函数具有相同的结构形式,只要把相应的符号变换一下即可。

4.6 绘制系统开环波德图并确定开环增益

系统的动态计算与分析在这里是采用频率法。首先根据系统的传递函数,求出波德图。在绘制波德图时,需要确定系统的开环增益K。

改变系统的开环增益K时,开环波德图上幅频曲线只升高或降低一个常数,曲线的形状不变,其相频曲线也不变。波德图上幅频曲线的低频段、穿越频率以及幅值增益裕量分别反映了闭环系统的稳态精度、截止频率及系统的稳定性。所以可根据闭环系统所要求的稳态精度、频宽以及相对稳定性,在开环波德图上调整幅频曲线位置的高低,来获得与闭环系统要求相适应的K值。

4.6.1 由系统的稳态精度要求确定K

由控制原理可知,不同类型控制系统的稳态精度决定于系统的开环增益。因此,可以由系统对稳态精度的要求和系统的类型计算得到系统应具有的开环增益K。

4.6.2由系统的频宽要求确定K

分析二阶或三阶系统特性与波德图的关系知道,当ζh和K/ωh都很小时,可近似认为系统的频宽等于开环对数幅值曲线的穿越频率,即ω-3dB≈ωc,所以可绘制对数幅频曲线,使ωc在数值上等于系统要求的ω-3dB值,如图39所示。由此图可得K值。

图39 由ω-3dB绘制开环对数幅频特性

a)0型系统;b)I型系统

4.6.3 由系统相对稳定性确定K

系统相对稳定性可用幅值裕量和相位裕量来表示。根据系统要求的幅值裕量和相位裕量来绘制开环波德图,同样也可以得到K。见图40。

实际上通过作图来确定系统的开环增益K,往往要综合考虑,尽可能同时满足系统的几项主要性能指标。

4.7 系统静动态品质分析及确定校正特性

在确定了系统传递函数的各项参数后,可通过闭环波德图或时域响应过渡过程曲线或参数计算对系统的各项静动态指标和误差进行校核。如设计的系统性能不满足要求,则应调整参数,重复上述计算或采用校正环节对系统进行补偿,改变系统的开环频率特性,直到满足系统的要求。

4.8 仿真分析

在系统的传递函数初步确定后,可以通过计算机对该系统进行数字仿真,以求得最佳设计。目前有关于数字仿真的商用软件,如Matlab软件,很适合仿真分析。

汽车倒车雷达能装在前面吗?

当然可以了,那个其实不叫倒车雷达,因为弗初只有车的后面才装,只有挂倒档的时候才起作用所以人们俗称倒车雷达,准确的叫泊车雷达,停车用的,目前好多高档车,像迈腾,帕萨特,低到速腾都配备了前置泊车雷达,前面四个后面四个,车内有雷达开启的开关。

什么是倒车雷达? 5分

倒车雷达全称叫“倒车防撞雷达”,也叫“泊车辅助装置”,是汽车泊车或者倒车时的安全辅助装置,由超声波传感器(俗称探头)、控制器和显示器(或蜂鸣器)等部分组成。能以声音或者更为直棱的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。

倒车雷达是根据蝙蝠在黑夜里高速飞行而不会与任何障碍物相撞的原理设计开发的。探头装在后保险杠上,根据不同价格和品牌,探头有二、三、四、六、八只不等,分别管前后左右。探头以45度角辐射,上下左右搜寻目标。它最大的好处是能探索到那些低于保险杠而司机从后窗难以看见的障碍物,并报警,如花坛、蹲在车后玩耍的小孩等。 倒车雷达的显示器装在后视镜上,它不停地提醒司机车距后面物体还有多少距离,到危险距离时,蜂鸣器就开始鸣叫,让司机停车。 挡位杆挂入倒挡时,倒车雷达自动开始工作,测距范围达0.3到2.0米左右,故在停车时,对司机很实用。

倒车雷达与倒车影像有什么区别?

倒车雷达是依靠回音探测距离并以通过不同频率的声音进行提示的,但光凭声音提示显然没有视觉来得直观,而且对声音的判断也必然会存在误差。

我们通常见到的后方倒车雷达一般都是采用超声波传感器来实现的,这类倒车雷达一般由传感器、控制器、反馈器三个部分组成。

在汽车处于倒档状态时,倒车雷达开始工作,由传感器发射超声波信号,一旦车后方出现障碍物,超声波被障碍物反射,传感器会接收到反射波信号,通过控制器对反射波信号进行处理来判断障碍物的所处位置以及和车身的距离,最后由反馈器通过声音(蜂鸣器)、数据(距离显示)、图像(显示屏模拟)等方式将信息反馈给驾驶员。

也就是说雷达只能测试后边是否有大的物体,不能直观的看到汽车后面的物体,尤其是车后的盲点和比较低的物体。

汽车倒车影像,经过多年的发展,倒车雷达系统已经升级了技术,改良了性能,不管从结构和外观上,还是从性能价格上,如今的产品都各有特点,使用较多的是数码显示、荧屏显示和多功能倒车镜显示这三种。该系统让倒车时,车后的状况更加直观可视,对于倒车安全来说是非常实用的配置之一。当挂倒车挡时,该系统会自动接通位于车尾的高清倒车摄像头,将车后状况清晰的显示于倒车液晶显示屏上,让你准确把握后方路况,倒车亦如前进般自如、自信。

倒车影像系统, 采用远红外线广角摄像装置安装在车后,通过车内的显示屏,清晰可见车后的障碍物。在这一点上倒车影像将取代倒车雷达,即使在晚上通过红外线也能看得一清二楚。专业车载探头防磁、防震、防水、防尘性能有进一步提升。车载显示器采用TFT真彩,经过防磁处理无信号干扰、无频闪。同时可接收两个视频,能够播放VCD,DVD,不用解码器。同时具有倒车可视自动水平转换,自动开关功能。仪表台、内视镜式显示器通过车后的车载摄像头可将后面的信息清晰显示。

倒车影像可以直观的看见车后的情况,可以说是一目了然啊!唯一的缺点就是倒车影像不能测试障碍物与车尾的距离。很多人认为这两个配合著使用非常使用,毕竟不能一直盯着显示屏看着倒车啊!所以,雷达可以直接测试并提示你障碍物与爱车的距离,你收到后用眼看下影像就一目了然了!使你倒车更加放心,快捷!

汽车前倒车雷达接什么线

前倒车雷达与后置式倒车雷达差不多,接线方法注意以下:

A、许多新车已经带有类似的功能,如前、后雷达,含可视系统(摄像头),此种无需自己另外加装。注意平时的维护就行。

B、如果原车没有的,建议买成套的设备,有一定口碑或是质量过硬的品牌,涉及车辆的线路方面,这点很重要。同时注意三包期。

C、接线时,注意线路与主线路勿串接在一起,勿影响其他方面。安装固定时注意绝缘层的保护或是加固、与其他线路的分开(如勿绑结在一起),注意搭铁线路的固定、紧固不松动。

D、前置探头需按产品说明书要求打孔定位,钻头用力均匀勿失误将定位孔钻大引发不能固定或是探头松动等不良后果。

E、使用原产品自带线路(接线),勿私自改装,并注意线路方面各保险片有无缺失,对缺失的补齐(一般新购的产品不会有此现象)。

F、如果车主没有相关电路知识或安装技术,建议直接送专业的汽车线路安装店进行加装或是直接去售后进行安装。确保产品安装正确,车辆线路安全。售后有保障。

倒车雷达起到什么作用

倒车雷达(car reversing aid system)全称叫“倒车防撞雷达”,也叫“泊车辅助装置”,是汽车泊车安全辅助装置,能以声音或者更为直观的显示告知贺驶员周围障碍物的情况,解除了驾驶员泊车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。

倒车雷达其实跟我们所知道的雷达是一样的(要不怎么会叫倒车雷达呢),是根据蝙蝠在黑夜里高速飞行而不会与任何障碍物相撞的原理设计开发的。通过感应装置发出超声波,然后通过反射回来的超声波来判断前方有没有障碍物,以及障碍物的距离,大小,方向,形状等。不过由于倒车雷达大小和实用性的限制,目前的倒车雷达主要具备的就是判断障碍物的距离,并作出提示,让驾驶者便于判断。

礌 通常的倒车雷达主要由三部分组成:感应器(探头),主机,显示设备。感应器就是发出和接收超声波信号的机构,然后将得到的信号传输到主机里面的电脑进行分析,再通过显示设备显示出来。控头装在后保险杠上,根据不同价格和品牌,探头有二、三、四、六只不等,有的高档进口车甚至要装八只,分别管前后左右。探头以45度角辐射,上下左右搜寻目标。经最大的好处是能探索到那些低于保险杠而司机从后窗难以看见的障碍物,并报警,如花坛,蹲在车后玩耍的小孩等。倒车雷达显示器装在驾驶台上,它不停地提醒司机车距后面物体还有多少距离,到危险距离时,蜂鸣器就开始鸣叫,让司机停车。

按探头分,倒车雷达有粘贴式、钻孔式和悬挂式三种。粘贴式探头后有层胶,可直接粘贴在后保险杠上。钻孔式探头,是在保险杠上打一个洞,然后把探头嵌进去。悬挂式探头主要用于货车。从显示器分,有数字显示、颜色显示和蜂鸣三种。数字式显示器是一只如BB机大小的盒子,安装在驾驶台上,距离直接用数字表示,精确到0.01米,让司机一目了然。它会提醒司机:1.5米到0.8米为安全区,0.8米至0.3米为适当区,0.3米到0.1米为危险区。在安全区,你可正常倒泊,在适当区,你要减速倒泊,在危险区,你则要停止倒泊。

泊车雷达和倒车雷达有什么区别和关系,前面可以直接装 20分

区别就是一个探测后面的,一个是全方位探测,是否有障碍物,前面侧面都是可以直接加装

倒车雷达前面2个有必要装吗

泊车雷达分为倒车雷达、前后泊车雷达和前置泊车雷达。

现在,大多数汽车出厂时配置了倒车雷达,高端汽车配置了前后泊车雷达。有些汽车只配置前2后4倒车雷达,主要目的是防擦角,和前置4路(6路)泊车雷达的功能还是有比较大的区别的。前置泊车雷达的技术相当复杂,难度很大,所以,目前只有少数厂家可以提供这个产品,其有关详细信息请参考百度百科“前置泊车雷达”条目:baike.baidu/subview/10272682/10435859

至于是否有用的问题,应该说这个产品提供了安全和便捷,需要就有用,不需要就没有用。其实和问汽车是否可用是一样的。

原车后面有倒车雷达了,汽车前面还可以装倒车雷达吗?

当然可以的。

但是要装专门用在前面的雷达。

我们方向盘在左边,保险杠右边有一片盲区,缺乏经验的司机往往不能准确的估计距离,所以往往是被擦伤最多的部位。在前面装了雷达,就可以避免这种情况。

倒车雷达如果安装在前面可以吗?前后有区别吗?

不可以,有区别,因为倒车是往后倒如果装在前面的话怎么倒车,发出的超声波不能接收到车后的信息

什么是倒车雷达

倒车雷达全称叫“倒车防撞雷达”,也叫“泊车辅助装置”,是汽车泊车或者倒车时的安全辅助装置,由超声波传感器(俗称探头)、功制器和显示器(或蜂鸣器)等部分组成。能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。

文章标签: # 系统 # 倒车 # 雷达